Available Models¶
AIA supports a wide range of AI models through the RubyLLM gem. This comprehensive list shows all supported models, their capabilities, and best use cases.
Viewing Available Models¶
Command Line Query¶
# List all available models
aia --available_models
# Filter by provider
aia --available_models openai
aia --available_models anthropic
aia --available_models google
# Filter by capability
aia --available_models vision
aia --available_models function_calling
aia --available_models text_to_image
# Complex filtering (AND operation)
aia --available_models openai,gpt,4
aia --available_models anthropic,claude,sonnet
Within Prompts¶
Model Categories¶
OpenAI Models¶
GPT-4 Family¶
- gpt-4: Most capable model, excellent for complex reasoning
- Context: 8,192 tokens
- Best for: Complex analysis, creative writing, code generation
-
Cost: Higher, but highest quality
-
gpt-4-turbo: Faster GPT-4 with larger context
- Context: 128,000 tokens
- Best for: Long documents, comprehensive analysis
-
Cost: Lower than GPT-4, faster responses
-
gpt-4-vision-preview: GPT-4 with image understanding
- Context: 128,000 tokens (including images)
- Best for: Image analysis, visual content creation
- Capabilities: Text + image input, text output
GPT-3.5 Family¶
- gpt-3.5-turbo: Fast, cost-effective general purpose
- Context: 4,096 tokens
- Best for: General queries, quick tasks, batch processing
-
Cost: Most economical
-
gpt-3.5-turbo-16k: Extended context version
- Context: 16,384 tokens
- Best for: Longer documents, extended conversations
- Cost: Moderate
Specialized OpenAI Models¶
- text-davinci-003: Legacy completion model
- code-davinci-002: Code-optimized model
- text-embedding-ada-002: Text embedding model
Anthropic Claude Models¶
Claude-3 Family¶
- claude-3-opus: Highest capability Claude model
- Context: 200,000 tokens
- Best for: Complex analysis, long documents, nuanced tasks
-
Cost: Premium pricing
-
claude-3-sonnet: Balanced performance and cost
- Context: 200,000 tokens
- Best for: Most general tasks, good balance
-
Cost: Moderate
-
claude-3-haiku: Fastest, most economical
- Context: 200,000 tokens
- Best for: Quick tasks, batch processing, simple queries
- Cost: Most economical
Claude-2 Family (Legacy)¶
- claude-2: Previous generation
- Context: 100,000 tokens
- Best for: Long-form content, analysis
- Status: Being phased out
Google Models¶
Gemini Family¶
- gemini-pro: Google's flagship model
- Context: 32,000 tokens
- Best for: Reasoning, structured data, math
-
Features: Multimodal capabilities
-
gemini-pro-vision: Gemini with vision
- Context: 32,000 tokens (including images)
- Best for: Image understanding, visual analysis
- Capabilities: Text + image input
PaLM Family¶
- text-bison: Text generation model
- chat-bison: Conversational model
Open Source Models (via Ollama)¶
Llama 2 Family¶
- llama2-7b: 7 billion parameter model
- Best for: Local deployment, privacy-sensitive tasks
-
Requirements: 8GB+ RAM
-
llama2-13b: 13 billion parameter model
- Best for: Better quality local processing
-
Requirements: 16GB+ RAM
-
llama2-70b: 70 billion parameter model
- Best for: Highest quality local processing
- Requirements: 64GB+ RAM
Code Llama¶
- codellama-7b: Code-specialized 7B model
- codellama-13b: Code-specialized 13B model
- codellama-34b: Code-specialized 34B model
Other Open Models¶
- mistral-7b: Efficient general-purpose model
- mixtral-8x7b: Mixture of experts model
- phi-2: Microsoft's compact model
- orca-2: Microsoft's reasoning-focused model
Model Capabilities¶
Text Generation¶
All models support: Basic text generation, question answering, summarization
Best performers: - Complex reasoning: GPT-4, Claude-3-Opus - Creative writing: GPT-4, Claude-3-Sonnet - Technical writing: Claude-3-Sonnet, GPT-4
Code Understanding and Generation¶
Code-optimized models: - CodeLlama family (7B, 13B, 34B) - GPT-4 (excellent general code understanding) - Claude-3-Sonnet (good at following coding standards)
Capabilities: - Code generation and completion - Bug detection and fixing - Code explanation and documentation - Refactoring suggestions
Vision and Multimodal¶
Image understanding models: - GPT-4 Vision Preview - Gemini Pro Vision - Claude-3 (limited vision capabilities)
Capabilities: - Image description and analysis - Chart and diagram interpretation - OCR and text extraction - Visual question answering
Function Calling and Tools¶
Tool-compatible models: - GPT-3.5-turbo (excellent function calling) - GPT-4 (sophisticated tool usage) - Claude-3-Sonnet (good tool integration)
Use cases: - API integrations - Database queries - File system operations - External service calls
Choosing the Right Model¶
By Task Type¶
Quick Tasks and Batch Processing¶
# Fast, economical models
aia --model gpt-3.5-turbo simple_task
aia --model claude-3-haiku batch_processing
Complex Analysis and Reasoning¶
# High-capability models
aia --model gpt-4 complex_analysis
aia --model claude-3-opus comprehensive_research
Code-Related Tasks¶
Long Documents¶
# Large context models
aia --model claude-3-sonnet long_document.pdf
aia --model gpt-4-turbo comprehensive_analysis.md
Image Analysis¶
# Vision-capable models
aia --model gpt-4-vision-preview image_analysis.jpg
aia --model gemini-pro-vision chart_interpretation.png
By Budget Considerations¶
Cost-Effective Options¶
- gpt-3.5-turbo: Best general-purpose budget option
- claude-3-haiku: Anthropic's economical choice
- Local models: Ollama-based models (compute cost only)
Premium Options¶
- gpt-4: OpenAI's flagship
- claude-3-opus: Anthropic's highest capability
- gpt-4-turbo: Large context with good performance
By Privacy and Security¶
Cloud-Based (Standard)¶
- OpenAI models (GPT-3.5, GPT-4)
- Anthropic models (Claude-3 family)
- Google models (Gemini family)
Local/Self-Hosted¶
- Ollama models (Llama 2, CodeLlama, Mistral)
- Privacy-focused deployment
- Full control over data
Model Configuration Examples¶
Development Workflow¶
# Different models for different stages
development:
quick_tasks: gpt-3.5-turbo
code_review: gpt-4
documentation: claude-3-sonnet
testing: codellama-13b
Content Creation Workflow¶
content:
research: claude-3-sonnet
drafting: gpt-4
editing: claude-3-opus
seo_optimization: gpt-3.5-turbo
Analysis Workflow¶
analysis:
data_exploration: claude-3-sonnet
statistical_analysis: gemini-pro
insights: gpt-4
reporting: claude-3-haiku
Model Performance Comparison¶
Speed (Responses per minute)¶
- gpt-3.5-turbo: ~60 RPM
- claude-3-haiku: ~50 RPM
- gemini-pro: ~40 RPM
- gpt-4: ~20 RPM
- claude-3-opus: ~15 RPM
Context Window Size¶
- Claude-3 family: 200,000 tokens
- GPT-4-turbo: 128,000 tokens
- Gemini-pro: 32,000 tokens
- GPT-3.5-turbo-16k: 16,384 tokens
- GPT-4: 8,192 tokens
Cost Efficiency (approximate)¶
- gpt-3.5-turbo: Most economical
- claude-3-haiku: Very economical
- gemini-pro: Moderate
- claude-3-sonnet: Moderate-high
- gpt-4: Premium
- claude-3-opus: Most expensive
Advanced Model Usage¶
Multi-Model Strategies¶
# Use different models for different aspects
aia --model gpt-3.5-turbo initial_analysis.txt
aia --model gpt-4 --include initial_analysis.txt detailed_review.txt
aia --model claude-3-sonnet --include detailed_review.txt final_synthesis.txt
Model Switching Based on Content¶
# Dynamic model selection
//ruby
content_size = File.read('<%= input %>').length
complexity = content_size > 10000 ? 'high' : 'low'
model = case complexity
when 'high' then 'claude-3-sonnet'
when 'low' then 'gpt-3.5-turbo'
end
puts "//config model #{model}"
Fallback Strategies¶
# Model fallback chain
//ruby
preferred_models = ['gpt-4', 'claude-3-sonnet', 'gpt-3.5-turbo']
available_models = `aia --available_models`.split("\n").map { |line| line.split.first }
selected_model = preferred_models.find { |model| available_models.include?(model) }
puts "//config model #{selected_model || 'gpt-3.5-turbo'}"
Staying Current¶
Model Updates¶
- Check regularly:
aia --available_models
- Version changes: Models are updated periodically
- New releases: Follow provider announcements
- Deprecations: Some models may be retired
Performance Monitoring¶
# Test model performance
time aia --model gpt-4 test_prompt
time aia --model claude-3-sonnet test_prompt
# Compare outputs
aia --model "gpt-4,claude-3-sonnet" --no-consensus comparison_test
Related Documentation¶
- Working with Models - Model selection and configuration
- Configuration - Model configuration options
- CLI Reference - Model-related command-line options
- Chat Mode - Interactive model usage
- Advanced Prompting - Model-specific techniques
The AI landscape evolves rapidly. Regularly check for new models and updates to ensure you're using the best tools for your specific needs!