Skip to content

Available Models

AIA supports a wide range of AI models through the RubyLLM gem. This comprehensive list shows all supported models, their capabilities, and best use cases.

Viewing Available Models

Command Line Query

# List all available models
aia --available_models

# Filter by provider
aia --available_models openai
aia --available_models anthropic
aia --available_models google

# Filter by capability
aia --available_models vision
aia --available_models function_calling
aia --available_models text_to_image

# Complex filtering (AND operation)
aia --available_models openai,gpt,4
aia --available_models anthropic,claude,sonnet

Within Prompts

# List models in a prompt
//available_models

# Filter models
//available_models openai,gpt

Model Categories

OpenAI Models

GPT-4 Family

  • gpt-4: Most capable model, excellent for complex reasoning
  • Context: 8,192 tokens
  • Best for: Complex analysis, creative writing, code generation
  • Cost: Higher, but highest quality

  • gpt-4-turbo: Faster GPT-4 with larger context

  • Context: 128,000 tokens
  • Best for: Long documents, comprehensive analysis
  • Cost: Lower than GPT-4, faster responses

  • gpt-4-vision-preview: GPT-4 with image understanding

  • Context: 128,000 tokens (including images)
  • Best for: Image analysis, visual content creation
  • Capabilities: Text + image input, text output

GPT-3.5 Family

  • gpt-3.5-turbo: Fast, cost-effective general purpose
  • Context: 4,096 tokens
  • Best for: General queries, quick tasks, batch processing
  • Cost: Most economical

  • gpt-3.5-turbo-16k: Extended context version

  • Context: 16,384 tokens
  • Best for: Longer documents, extended conversations
  • Cost: Moderate

Specialized OpenAI Models

  • text-davinci-003: Legacy completion model
  • code-davinci-002: Code-optimized model
  • text-embedding-ada-002: Text embedding model

Anthropic Claude Models

Claude-3 Family

  • claude-3-opus: Highest capability Claude model
  • Context: 200,000 tokens
  • Best for: Complex analysis, long documents, nuanced tasks
  • Cost: Premium pricing

  • claude-3-sonnet: Balanced performance and cost

  • Context: 200,000 tokens
  • Best for: Most general tasks, good balance
  • Cost: Moderate

  • claude-3-haiku: Fastest, most economical

  • Context: 200,000 tokens
  • Best for: Quick tasks, batch processing, simple queries
  • Cost: Most economical

Claude-2 Family (Legacy)

  • claude-2: Previous generation
  • Context: 100,000 tokens
  • Best for: Long-form content, analysis
  • Status: Being phased out

Google Models

Gemini Family

  • gemini-pro: Google's flagship model
  • Context: 32,000 tokens
  • Best for: Reasoning, structured data, math
  • Features: Multimodal capabilities

  • gemini-pro-vision: Gemini with vision

  • Context: 32,000 tokens (including images)
  • Best for: Image understanding, visual analysis
  • Capabilities: Text + image input

PaLM Family

  • text-bison: Text generation model
  • chat-bison: Conversational model

Open Source Models (via Ollama)

Llama 2 Family

  • llama2-7b: 7 billion parameter model
  • Best for: Local deployment, privacy-sensitive tasks
  • Requirements: 8GB+ RAM

  • llama2-13b: 13 billion parameter model

  • Best for: Better quality local processing
  • Requirements: 16GB+ RAM

  • llama2-70b: 70 billion parameter model

  • Best for: Highest quality local processing
  • Requirements: 64GB+ RAM

Code Llama

  • codellama-7b: Code-specialized 7B model
  • codellama-13b: Code-specialized 13B model
  • codellama-34b: Code-specialized 34B model

Other Open Models

  • mistral-7b: Efficient general-purpose model
  • mixtral-8x7b: Mixture of experts model
  • phi-2: Microsoft's compact model
  • orca-2: Microsoft's reasoning-focused model

Model Capabilities

Text Generation

All models support: Basic text generation, question answering, summarization

Best performers: - Complex reasoning: GPT-4, Claude-3-Opus - Creative writing: GPT-4, Claude-3-Sonnet - Technical writing: Claude-3-Sonnet, GPT-4

Code Understanding and Generation

Code-optimized models: - CodeLlama family (7B, 13B, 34B) - GPT-4 (excellent general code understanding) - Claude-3-Sonnet (good at following coding standards)

Capabilities: - Code generation and completion - Bug detection and fixing - Code explanation and documentation - Refactoring suggestions

Vision and Multimodal

Image understanding models: - GPT-4 Vision Preview - Gemini Pro Vision - Claude-3 (limited vision capabilities)

Capabilities: - Image description and analysis - Chart and diagram interpretation - OCR and text extraction - Visual question answering

Function Calling and Tools

Tool-compatible models: - GPT-3.5-turbo (excellent function calling) - GPT-4 (sophisticated tool usage) - Claude-3-Sonnet (good tool integration)

Use cases: - API integrations - Database queries - File system operations - External service calls

Choosing the Right Model

By Task Type

Quick Tasks and Batch Processing

# Fast, economical models
aia --model gpt-3.5-turbo simple_task
aia --model claude-3-haiku batch_processing

Complex Analysis and Reasoning

# High-capability models
aia --model gpt-4 complex_analysis
aia --model claude-3-opus comprehensive_research
# Code-optimized models
aia --model codellama-34b code_generation
aia --model gpt-4 code_review

Long Documents

# Large context models
aia --model claude-3-sonnet long_document.pdf
aia --model gpt-4-turbo comprehensive_analysis.md

Image Analysis

# Vision-capable models
aia --model gpt-4-vision-preview image_analysis.jpg
aia --model gemini-pro-vision chart_interpretation.png

By Budget Considerations

Cost-Effective Options

  • gpt-3.5-turbo: Best general-purpose budget option
  • claude-3-haiku: Anthropic's economical choice
  • Local models: Ollama-based models (compute cost only)

Premium Options

  • gpt-4: OpenAI's flagship
  • claude-3-opus: Anthropic's highest capability
  • gpt-4-turbo: Large context with good performance

By Privacy and Security

Cloud-Based (Standard)

  • OpenAI models (GPT-3.5, GPT-4)
  • Anthropic models (Claude-3 family)
  • Google models (Gemini family)

Local/Self-Hosted

  • Ollama models (Llama 2, CodeLlama, Mistral)
  • Privacy-focused deployment
  • Full control over data

Model Configuration Examples

Development Workflow

# Different models for different stages
development:
  quick_tasks: gpt-3.5-turbo
  code_review: gpt-4
  documentation: claude-3-sonnet
  testing: codellama-13b

Content Creation Workflow

content:
  research: claude-3-sonnet
  drafting: gpt-4
  editing: claude-3-opus
  seo_optimization: gpt-3.5-turbo

Analysis Workflow

analysis:
  data_exploration: claude-3-sonnet
  statistical_analysis: gemini-pro
  insights: gpt-4
  reporting: claude-3-haiku

Model Performance Comparison

Speed (Responses per minute)

  1. gpt-3.5-turbo: ~60 RPM
  2. claude-3-haiku: ~50 RPM
  3. gemini-pro: ~40 RPM
  4. gpt-4: ~20 RPM
  5. claude-3-opus: ~15 RPM

Context Window Size

  1. Claude-3 family: 200,000 tokens
  2. GPT-4-turbo: 128,000 tokens
  3. Gemini-pro: 32,000 tokens
  4. GPT-3.5-turbo-16k: 16,384 tokens
  5. GPT-4: 8,192 tokens

Cost Efficiency (approximate)

  1. gpt-3.5-turbo: Most economical
  2. claude-3-haiku: Very economical
  3. gemini-pro: Moderate
  4. claude-3-sonnet: Moderate-high
  5. gpt-4: Premium
  6. claude-3-opus: Most expensive

Advanced Model Usage

Multi-Model Strategies

# Use different models for different aspects
aia --model gpt-3.5-turbo initial_analysis.txt
aia --model gpt-4 --include initial_analysis.txt detailed_review.txt
aia --model claude-3-sonnet --include detailed_review.txt final_synthesis.txt

Model Switching Based on Content

# Dynamic model selection
//ruby
content_size = File.read('<%= input %>').length
complexity = content_size > 10000 ? 'high' : 'low'

model = case complexity
        when 'high' then 'claude-3-sonnet'
        when 'low' then 'gpt-3.5-turbo'
        end

puts "//config model #{model}"

Fallback Strategies

# Model fallback chain
//ruby
preferred_models = ['gpt-4', 'claude-3-sonnet', 'gpt-3.5-turbo']
available_models = `aia --available_models`.split("\n").map { |line| line.split.first }

selected_model = preferred_models.find { |model| available_models.include?(model) }
puts "//config model #{selected_model || 'gpt-3.5-turbo'}"

Staying Current

Model Updates

  • Check regularly: aia --available_models
  • Version changes: Models are updated periodically
  • New releases: Follow provider announcements
  • Deprecations: Some models may be retired

Performance Monitoring

# Test model performance
time aia --model gpt-4 test_prompt
time aia --model claude-3-sonnet test_prompt

# Compare outputs
aia --model "gpt-4,claude-3-sonnet" --no-consensus comparison_test

The AI landscape evolves rapidly. Regularly check for new models and updates to ensure you're using the best tools for your specific needs!